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Objectives (1/4)

Let us consider the one-dimensional viscous Burgers equation:

��� �� � � � ���� � � � � ���� � 	 � 
 �� 	 
 � 	 � 
 �� 	 � � 	

subject to the initial condition

� � � 	 � � � � � � � ���
The look-ahead strategy:

Assume that the data at

� � � �
are given and exact.

Derive exact and approximate error functionals at

� � � � � �

.

Build an adapted grid minimizing the approximate error functional.

Interpolate data to the adapted grid and perform one time step.
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Objectives (2/4)

Let

� � � �

. We consider a grid

� � � �� � � �� � � � � � � ��� � � � 

and define

� ��� � � � � � � � ��� � � � � ��� �� � 	 � ��� � � � � � � ��� � � � � ����

Let

 � � � � � � � � 

� � � � � �

! "�#$%
! "&#

� � � � �' � �
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Objectives (3/4)

Let us analyze an error functional associated with the donor scheme:

 � � � �� � � � � � ( �)� � � � � �  � � �

�  � �)� � � � � � * � �
� � � � � � �+ �� � � � + �� � � � * � �
� �)� � � � �

,- � �
- �

.
� � � � , - � �

- �
.

�

where

+ �� denotes the flux at point � �/� ,

+ �� � 

�

01
2

�  � �)� � � � � � � if  � � � � � � �  � �43 � � � 5 � 	

�  � ���43 � � � � � otherwise 	

and

6 798 � * � �  � �)� � � � �� �)� � � � � � � �� � �)� � � � � � � � 
�
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Objectives (4/4)

Consider the following minimization problem:

6 7 8! :% ;< < < ; ! :>= ? �A@ ! �B � ��� C �
where

? � @ ! �
�

�ED �
! :#$%

! :#
F � � � 	 � � � � � �  � � � �� � � � � F �' � �

�
�D �

! :#$%
! :#

F � � � 	 � � � � � � ( ��� � � � � �  � � � F �G' �

The stability condition and Taylor expansion give

! :#$%
! :#

H � � � 	 � � � � � � ( �)� � � � � �B  � � C � I � ' � �

� ����
JKJLJMJ ! :# $% NO

�QP � � ��� � � � � � R
 � � � * � � � ��� � � � � � �S

� � ��� � � � � � � ���43 � � � � �� �)� � � � �
T � U � � ��� � � � � � V�
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Objectives (4/4)

Consider the following minimization problem:

6 7 8! :% ;< < < ; ! :>= ? �A@ ! �B � ��� C �
where

? � @ ! �
�

�ED �
! :#$%

! :#
F � � � 	 � � � � � �  � � � �� � � � � F �' � �

�
�D �

! :#$%
! :#

F � � � 	 � � � � � � ( ��� � � � � �  � � � F �G' �

The stability condition and Taylor expansion give

! :#$%
! :#

H � � � 	 � � � � � � ( �)� � � � � �B  � � C � I � ' � W �����
JLJMJKJ ! :#$% NO

� P � � �)� � � � � � R
 �
T

�
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Exact error functional (1/2)
Consider a grid � � � � � � � � � � � � � � � � � 

and define � � � � � � � � � � � � � � � �� � 	 � � � � � � � � � � � � � ��

Let

+ X � � �

be a piecewise constant approximation of
+ � � �

. Then, the minimum of
the functional

Y �B � � C 	 B  + � � � � � C � �
�

�
Z+ � � � � + X � � � [ � ' � �

�
�ED �

! #$%
! #

Z+ � � � �  + � � � � � [ � ' �

is achieved when
 + � � � � � � 


� � � � � �
! #$%

! #
+ � � �' � �
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Exact error functional (2/2)
Thus, the problem

6 798!% ;< < < ; ! = ; \]% NO ; < < < ; \ ] = $% NO Y �B � � C 	 B  + � � � � � C �
is reduced to

6 7 8!% ;< < < ; ! = ? @ ! �B � � C � 	 ? @ ! �B � � C � �
�

�ED �
! # $%

! #
Z+ � � � �  + � � � � � [ � ' � �

The Taylor expansion with the Lagrange remainder gives

6 7 8!% ;< < < ; ! = ? @ ! �B � � C � 	 ? @ ! �B � � C � � 


 �

�
�ED �

�+
��

JMJKJMJ ! ^ #$% NO
� � R � � � � �

where � _ � � � � � is a point from interval

� � � 	 � � � � � .
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Minimization&equidistribution (1/4)

Lemma. Let ` � � � � � �ba 	 a �dc e � f e

be a set of functions defined by

` � � � � � � � � 	 � � � � � � ! #$%
! # g � � �' � 	 � h � � h � � � � h 
 	

where g � � � 5 �

is an arbitrary bounded function. Then

6 798!% ; < < < ! =
�

�ED � ` i� � � � � � � � 	 � � � � � � jk� l � 
 � k 3 �

where i is a positive integer and

j �
�

�ED � ` � � � � � � � � 	 � � � � � � �
� g � � �' � �

Moreover, the minimum is achieved when ` � � � � � � � � 	 � � � � � � j� � l � 
 �

.
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Minimization&equidistribution (1/4)

Lemma. Let ` � � � � � �ba 	 a �dc e � f e

be a set of functions defined by

` � � � � � � � � 	 � � � � � � ! #$%
! # g � � �' � 	 � h � � h � � � � h 
 	

where g � � � 5 �

is an arbitrary bounded function. Then

6 798!% ; < < < ! =
�

�ED � ` i� � � � � � � � 	 � � � � � � jk� l � 
 � k 3 �

where i is a positive integer and

j �
�

�ED � ` � � � � � � � � 	 � � � � � � �
� g � � �' � �

Moreover, the minimum is achieved when ` � � � � � � � � 	 � � � � � � j� � l � 
 �

.
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Minimization&equidistribution (2/4)

We introduce additional notations:

mon � � � � � � 


 �

�+
��

JLJMJKJ ! ^ # $% NO
� � R

and

m ` � � � � � � mon � � � � � � � � � � ��

Then, we can rewrite the functional

? @ ! as follows:

? @ ! �B � � C � � 


 �

�
�D �

�+
���

JKJMJLJ ! ^ #$% NO
� � R � � � � � �
�

�ED �
m ` R � � � � � �

�
�ED �

mon R � � � � � � R � � � � ��

It is obvious that

m ` � � � � � f
! #$%

! #
JLJMJKJ
�+

���
JLJMJKJ
� � R ' � and

�
�D �

m ` � � � � � f
�

�
JLJMJKJ
�+

��
JLJMJKJ
� � R ' � �
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Minimization&equidistribution (2/4)

We introduce additional notations:

mon � � � � � � 


 �

�+
��

JLJMJKJ ! ^ # $% NO
� � R

and

m ` � � � � � � mon � � � � � � � � � � ��

Then, we can rewrite the functional

? @ ! as follows:

? @ ! �B � � C � � 


 �

�
�D �

�+
���

JKJMJLJ ! ^ #$% NO
� � R � � � � � �
�

�ED �
m ` R � � � � � �

�
�ED �

mon R � � � � � � R � � � � ��

In other words, taking g � � � � F �+ � �� F � � R

, we get

m ` � � � � � f
! #$%

! #
g � � �' � and

�
�D �

m ` � � � � � f
�

�
g � � �' � �
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Minimization&equidistribution (3/4)

The equidistribution principle,

m ` � � � � � � m ` �43 � � � 	 p � 
 	 � � � 	 l 	
may be rewritten as follows:

mon � � � � � � � � � � � � � � � mon �43 � � � � � � � � �43 � � � � �

It is a discretization of the non-linear elliptic equation

�
�q n � � � ��� �q � � 	 � �� � � � 	 � � 
 � � 
 	

on a uniform grid with the coefficient n � � �

given by

n � � � � JMJMJMJ
�+

��
JMJMJMJ
� � R

�
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Minimization&equidistribution (4/4)

A discrete analog of the nonlinear elliptic equation can be directly derived from

r ? @ ! � � �

Recall that

? @ ! �B � � C � �
�

�ED �
! # $%

! #
Z+ � � � �  + � � � � � [ � ' � �

Then � ? @ !��� � � �+ � � � � �  + �43 � � � �  + � � � � � � � �

The Taylor expansion at point � � results in

�+
��

JKJLJMJ ! #
Z � � � � � � � � �3 � � � [ � 


s
� � +

�� �
JKJLJMJ ! #
H � � � � � � � � � � �43 � � � I � � �
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Approximate error functional (1/7)

Let

t X be an interpolation operator from grid

B � � � C to grid

B � � C . Consider the
following minimization problem:

6 798!% ; < < < ; ! =
�

�
JKJ + � � � � u t X �+ X ; � � v � � � JKJ � ' � �

We assume thatt X is exact for linear functions;t X is conservative.�
�

JKJ + � � � � u t X �+ X ; � � v � � � JKJ � ' � �
�

�ED �
! #$%

! #
JMJLJ + � � � �  + � � � � � � U � � � � � � � � � JMJLJ
� ' �

�
�

�ED �
w

x 


 �

�+
���

JKJMJLJ ! ^ #$% NO
� � R � � � � � � U � � V � � � � � �
y

z �
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Approximate error functional (2/7)

Recall that

? @ ! �
�

�ED �
mon R � � � � � � R � � � � ��

Since the precise computation of coefficients

m n � � � � � is impossible, they are
replaced by computable coefficients n � � � � � such that n � � � � � W mon � � � � � ,

n � � � � � � 

� R � � � � �

�
{D �

| ! # }
~! # }

JKJMJLJKJ
 + � { � � � � � ,- + X ; �- �

.
{ � � � �

� � � � { � � � � � � � t X �+ � ; X �� � � � JKJMJLJKJ
�' �

where

� m� � {	 �� � {� � �� � 	 � � � � � � �� � {	 � � { � � � . This results in an approximate
minimization problem:

6 798!% ;< < < ; ! = ?)� k �B � � C � 	 ?)� k �B � � C � �
�

�D � n R � � � � � � R � � � � ��

Sandia National Laboratory, January 16-17 –



Approximate error functional (3/7)

�
�q n � � � ��� �q � � 	 � �� � � � 	 � � 
 � � 
 	

Algorithm (equidistribution principle)

For

� � 
 	 � � � 	 �)� � ! do

1. For the given grid

B � {� C compute values n {� � � � � , p � � 	 � � � 	 l

.

2. Perform one Gauss-Seidel sweep

n {� � � � � � � {� � � � � { � �� � � n {�43 � � � � � { � �� � � { � ��43 � � � � 	 p � 
 	 � � � 	 l�

3. Stop iterations if 6 ��� F � {� � � { � �� F h � U�

where

� U�

is the user

given tolerance.
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Approximate error functional (4/7)

6 798!% ;< < < ; ! = ?�� k �B � � C � 	 ?�� k �B � � C � �
�

�ED � n R � � � � � � R � � � � �

Algorithm (direct minimization)

For

� � 
 	 � � � 	 �)� � ! do

1. For the given grid

B � {� C compute values n {� � � � � , p � � 	 � � � 	 l

.

2. Perform one Gauss-Seidel sweep

6 798! } $%#
� m n { � �� � � � � � � {� � � � � { � �� � � R � � mon { � ��43 � � � � � { � �� � � { � ��43 � � � R 	

where

p � 
 	 � � � 	 l
,

t X is the interpolation operator from grid

B � {� C

to grid

B � { � �� C
, and

mon X ; { � � � t X � n X ; { �

.

3. Stop iterations if 6 ��� F � {� � � { � �� F h � U�

.
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Approximate error functional (4/7)

�
�ED � n {� � � � � � {� � � � � �

�
�ED �

m n { � �� � � � � � { � �� � � � ��
Algorithm (direct minimization)

For

� � 
 	 � � � 	 �)� � ! do

1. For the given grid

B � {� C compute values n {� � � � � , p � � 	 � � � 	 l

.

2. Perform one Gauss-Seidel sweep

6 798! } $%#
� m n { � �� � � � � � � {� � � � � { � �� � � R � � mon { � ��43 � � � � � { � �� � � { � ��43 � � � R 	

where

p � 
 	 � � � 	 l
,

t X is the interpolation operator from grid

B � {� C

to grid

B � { � �� C
, and

mon X ; { � � � t X � n X ; { �

.

3. Stop iterations if 6 ��� F � {� � � { � �� F h � U�

.
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Approximate error functional (5/7)

Let us consider a test function

+ � � �

given by

+ � � � � 
 � ��� � � � � ��
 � �� � � � �� � � � � 	 � � � � � � 
� � � ��� � 	 � � � � � � s�� � �� � 	

with � � � � � � �

. Let � �B � � C � � ? @ ! �B � � C �

l � �B � � �� C � � �B � @ ! ; � �� C � � �B � � k ; � �� C � � �B � � k ; @�� C �

16 2.99e-2 1.01e-2 1.19e-2 1.19e-2

32 1.59e-2 4.99e-3 5.22e-3 5.22e-3

64 7.99e-3 2.48e-3 2.51e-3 2.51e-3

128 4.00e-3 1.24e-3 1.24e-3 1.24e-3
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Approximate error functional (6/7)
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Approximate error functional (7/7)
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Grid smoothing (1/4)

Let the mesh steps satisfy the following condition:

�
� � 
 h � �43 � � �� � � � � � h � � 

� 	 p � 
 	 � � � 	 l�

Lemma. Let n � � � � � , p � � 	 � � � 	 l

, be given values of a monitor function. The
values

�n � � � � � , p � � 	 � � � 	 l

, of a smoothed monitor function satisfying

�
� � 
 h �n � � � � ��n �3 � � � h � � 

� 	 p � 
 	 � � � 	 l 	

can be computed by solving the system of

l � 


linear equations:

�n � � � � � � � � � � 
 � � �n � � R � � � � �n � � � � � � �n �3 � � � � � n � � � � � 	

where

�n 3 � � � � n � � � and

�n � � R � � � n � � � � � .
Sandia National Laboratory, January 16-17 –



Grid smoothing (1/4)

Let the mesh steps satisfy the following condition:

�
� � 
 h n � � � � �n �3 � � � h � � 

� 	 p � 
 	 � � � 	 l�

Lemma. Let n � � � � � , p � � 	 � � � 	 l

, be given values of a monitor function. The
values

�n � � � � � , p � � 	 � � � 	 l

, of a smoothed monitor function satisfying

�
� � 
 h �n � � � � ��n �3 � � � h � � 

� 	 p � 
 	 � � � 	 l 	

can be computed by solving the system of

l � 


linear equations:

�n � � � � � � � � � � 
 � � �n � � R � � � � �n � � � � � � �n �3 � � � � � n � � � � � 	

where

�n 3 � � � � n � � � and

�n � � R � � � n � � � � � .
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Grid smoothing (2/4)

Algorithm (direct minimization with smoothing)

For

� � 
 	 � � � 	 �)� � ! do

1. For the given grid

B � {� C compute values n {� � � � � , p � � 	 � � � 	 l

.

2. Compute the smoothed values

�n {� � � � � , p � � 	 � � � 	 l
, by solving the

tridiagonal system.

3. Perform one Gauss-Seidel sweep

6 798! } $%#
� m n { � �� � � � � � � {� � � � � { � �� � � R � � mon { � ��43 � � � � � { � �� � � { � ��43 � � � R 	

where

p � 
 	 � � � 	 l
,

t X is the interpolation operator from grid

B � {� C

to grid

B � { � �� C
, and

mon X ; { � � � t X � �n X ; { �

.

4. Stop iterations if 6 ��� F � {� � � { � �� F h � U�

where

� U�

is the user

given tolerance.
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Grid smoothing (3/4)

Recall that � �B � � C � � ? @ ! �B � � C ��

l � �B � � k ; � �� C � � �B �� � k ; � � ; � �� C � � �B �� � k ; � � ; � �� C �

16 1.19e-2 1.62e-2 1.68e-2

32 5.22e-3 6.01e-3 6.50e-3

64 2.51e-3 2.68e-3 2.66e-3

128 1.24e-3 1.28e-3 1.25e-3
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Grid smoothing (4/4)
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Burgers equation (1/2)

Let

� � � � �

, � � � � � � �

and

� �B � �� C � �
w

�Lx
�

�D �
! �#$%

! �#
� � � � 	 � � �  � �� � � � � � �' �

y
�Lz

� � �
�
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Burgers equation (2/2)

Let

� � � � �

, � � � and the initial condition be the periodic function

� � � � � � � � � �¡  798 � �£¢ � ���
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Conclusion
The error introduced by the numerical scheme can be ignored even for
lower order time integration schemes.

The error introduced by the numerical interpolation can be ignored when
the interpolation operator is more accurate than the discretization.

Necessity of a grid smoothing has been observed in many numerical
experiments.

The algorithms have shown a robust behavior for 1D Burgers equation.
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